Nichols algebras from quantum principal bundles over quantum flag manifolds

Andrey Krutov^{*a,d*}, Réamonn Ó Buachalla^{*b*}, Karen Strung^{*c*}

^aUniversity of Zagreb ^bl'Université libre de Bruxelles ^cRadboud Universiteit (Nijmegen) ^dIndependent University of Moscow

Quantum Flag Mainfolds in Prague 16–20 September 2019 Supported by the QuantiXLie Centre of Excellence, a project cofinanced by the Croatian Government and European Union through the European Regional Development Fund - the Competitiveness and Cohesion Operational Programme (KK.01.1.1.01.0004).

Europska unija Zajedno do fondova EU Let H be a Hopf algebra

- $\varepsilon \colon H \to \mathbb{C}$
- $\Delta: H \to H \otimes H, \Delta h = \sum_i x_i \otimes y_i = h_{(1)} \otimes h_{(2)}$
- $S \colon H \to H$

Let $H^+ = H \cap \ker \varepsilon$ and $h^+ = h - \varepsilon(h)1$ for $h \in H$.

Nichols algebras

A *braided vector* space is a pair (V, σ) where V is a vector space and $\sigma \in Aut(V \otimes V)$ such that

 $\sigma_{12}\sigma_{23}\sigma_{12} = \sigma_{23}\sigma_{12}\sigma_{23}, \qquad \sigma_{12} := \sigma \otimes \mathrm{id}, \ \sigma_{23} := \mathrm{id} \otimes \sigma.$

Let \mathbb{B}_n be the braid group of n stands generated by β_1, \ldots, β_n subject to the relations

$$\beta_{i}\beta_{i+1}\beta_{i} = \beta_{i+1}\beta_{i}\beta_{i+1}, \qquad 1 \le i, j \le n-2;$$

$$\beta_{i}\beta_{j} = \beta_{j}\beta_{i}, \qquad 1 \le i, j \le n-2, |i-j| \ge 2.$$

$$\rho_{n} : \mathbb{B}_{n} \to \operatorname{Aut}(V^{\otimes n}), \quad \rho_{n}(\beta_{i}) = \operatorname{id} \otimes \cdots \otimes \operatorname{id} \otimes \sigma \otimes \operatorname{id} \otimes \cdots \otimes \operatorname{id},$$

 $s: S_n \to \mathbb{B}_n$ such that $s(t_i) = \beta_i, \ s(t_i t_{i+1}) = s(t_i)s(t_{i+1})$

$$\mathfrak{S}_n^{\sigma} := \sum_{\pi \in S_n} \rho_n(s(\pi)) \colon V^{\otimes n} \to V^{\otimes n}.$$

Definition

The Nichols algebra of a braided vector space (V,σ) is the braided Hopf algebra defined by

$$\mathfrak{B}(V) := \bigoplus_{n \in \mathbb{Z}_{n \ge 0}} \mathfrak{B}_n(V), \quad \text{where} \quad \mathfrak{B}_n(V) = \mathcal{T}^n(V) / \ker(\mathfrak{S}_n^{\sigma}).$$

Example

 $\sigma(v \otimes w) = w \otimes v$ for all $v, w \in V$ then $\mathfrak{B}(V) = \Lambda(V)$.

Example

 $\sigma(v\otimes w)=-w\otimes v \text{ for all } v,w\in V \text{ then } \mathfrak{B}(V)=S(V).$

Example

For $U_q(\mathfrak{g})$, $U_q(\mathfrak{n}_+)$ and $U_q(\mathfrak{n}_-)$ are Nichols algebras.

Definition

A Yetter–Drinfeld module over a Hopf algebra H is an H-module V, with an action \triangleleft , and a H-comodule structure such that

$$v_{(0)} \triangleleft h_{(1)} \otimes v_{(1)} \triangleleft h_{(2)} = (v \triangleleft h_{(2)})_{(0)} \otimes h_{(1)} (v \triangleleft h_{(2)})_{(1)} \quad \forall h \in H, \ v \in V.$$

The category of Yetter–Drinfeld modules over H is denoted by $\mathsf{YD}_H^H.$

The braiding in the category YD_H^H is defined by

$$\begin{split} &\sigma\colon V\otimes W\to W\otimes V,\qquad v\otimes w\mapsto w_{(0)}\otimes v\triangleleft w_{(1)}\quad \text{for }v\in V\text{, }w\in W.\\ &\text{Example}\\ &H=\mathbb{C}\{1\}\text{, }v\triangleleft 1=v\text{ for all }v\in V\text{ then }\mathfrak{B}(V)=S(V). \end{split}$$

Example

$$H = \mathbb{C}\{\mathbb{Z}/2\} = \operatorname{Span}\{1, -1\}, v \triangleleft (-1) = -v \text{ then } \mathfrak{B}(V) = \Lambda(V).$$

Quantum Homogeneous Spaces

Let *G* and *H* be Hopf algebras, and $\pi : G \to H$ a surjective Hopf algebra map. A right *H*-coaction, giving *G* the structure of a right *H*-comodule algebra, is given by

$$\Delta_R := (\mathrm{id} \otimes \pi) \circ \Delta : G \to G \otimes H.$$

We call the coinvariant subspace $M := G^{\operatorname{co} H}$ of such a coaction a *quantum homogeneous space*.

A strong bicovariant splitting map is a unital linear map $i: H \to G$ splitting the projection $\pi: G \to H$ such that

 $(i \otimes id) \circ \Delta = \Delta_R \circ i,$ $(id \otimes i) \circ \Delta = \Delta_L \circ i.$

Remark

The coproduct of *G* restricts to a left *M*-comodule $\Delta_L: M \to G \otimes M$, giving *M* the structure of a left *G*-comodule map.

Takeuchi's Categorical Equivalence

Let H Mod denote the category of left H-comodules.

Definition

Let ${}^G_M Mod_0$ be the category whose objects are left *G*-comodules $\Delta_L : \mathcal{F} \to G \otimes \mathcal{F}$, endowed with a *M*-*M*-bimodule structure, such that

1
$$\Delta_L(mf) = \Delta_L(m)\Delta_L(f)$$
, for all $f \in \mathcal{F}, m \in M$,
2 $\mathcal{F}B^+ = B^+\mathcal{F}$,

and whose morphisms are left $G\mbox{-}comodule,\,M\mbox{-}M\mbox{-}bimodule,$ maps.

Denoting by \Box_H the cotensor product over *H*.

$$\begin{split} \Phi &: {}^G_M \mathsf{Mod}_0 \to {}^H \mathsf{Mod}, & \mathcal{F} \mapsto \mathcal{F}/M^+ \mathcal{F}, \\ \Psi &: {}^H \mathsf{Mod} \to {}^G_M \mathsf{Mod}, & V \mapsto G \square_H V, \end{split}$$

where the left *H*-comodule structure of $\Phi(\mathcal{F})$ is given by $(\pi \otimes id) \circ \Delta_L$, and the *M*-*M*-module, and left *G*-comodule, structures of $\Psi(V)$ are defined on the first tensor factor.

Definition

A differential calculi is a dg-algebra $(\Omega^{\bullet} \simeq \bigoplus_{k \in \mathbb{Z}_{\geq 0}} \Omega^k, d)$ which is generated in degree 0 as a dg-algebra.

Definition

A first-order differential calculi over an algebra A is a pair (Ω^1, d) , where Ω^1 is A-A-bimodule and $d: A \to \Omega^1$ is a linear map such that

1)
$$d(ab) = (da)b + adb$$
 for all $a, b \in A$,

2) Ω^1 is generated as a left A-module by

 $\mathrm{d}A = \mathrm{Span}(\mathrm{d}a \mid a \in A).$

Definition

The universal first-order calculi over A is the pair $(\Omega^1_u(A), \mathrm{d}_u),$ where

1
$$\Omega^1_u(A) = \ker m$$
, where $m \colon A \otimes A \to A$ it the product map,

2
$$d_u: a \mapsto 1 \otimes a - a \otimes 1$$
 for $a \in A$.

Theorem (Woronowicz'89)

Every first-order differential calculi over A is of the form $(\Omega_u^1(A)/N, \operatorname{proj} \circ d_u)$, where N is a A-sub-bimodule of $\Omega_u^1(A)$, and $\operatorname{proj}: \Omega_u^1(A) \to \Omega_u^1(A)/N$ is the canonical projection. For $\Omega^1 = \Omega_u^1(A)/N$ the maximal prolongation is the differential calculi over A given by the pair

$$(\Omega^{\bullet}(A) := \mathcal{T}(A) / \langle N + \mathrm{d}N \rangle, \mathrm{d}).$$

A first-order differential calculi $(\Omega^1(M), d)$ over a quantum homogeneous space $M = G^{\operatorname{co} H}$ is *covariant* if there exists a map $\Delta_L \colon \Omega^1(M) \to G \otimes \Omega^1(M)$ such that

 $\Delta_L(m \mathrm{d} n) = \Delta(m)(\mathrm{id} \otimes \mathrm{d}) \Delta(n) \quad \text{for all } m, n \in M.$

Note that $\Omega^1(M)$ is an object in ${}^G_M \operatorname{Mod}_M$. Moreover, $(\Omega_u(M), \operatorname{d}_u)$ is covariant and any covariant calculi $\Omega^1(M) \simeq \Omega^1(M)/N$ is classified by the sub-object Nof $\Omega^1_u(M)$ in ${}^G_M \operatorname{Mod}_M$. Warning. d is not a morphism in ${}^G_M \operatorname{Mod}_M$.

Differential Calculi

Denote by ${}^{H}\mathcal{I}(M^{+})$ the category whose objects I are sub-comodules of M, satisfying

 $bm^+ \in I$ for all $m \in M$, $b \in I$

and for two objects I, J, the hom-set Hom(I, J) is comprised of the inclusion map if $I \subseteq J$, and is otherwise empty.

Theorem

An equivalence of categories between ${}^{H}\mathcal{I}(M^{+})$ and ${}^{H}\text{FODC}(M)$ is given by functors

$$I: {}^{H}\mathsf{FODC}(M) \to {}^{H}\mathcal{I}(M^{+}), \quad \Omega^{1}_{u}(M)/N \mapsto \{\varepsilon(a_{i})b_{i}^{+} \mid \sum_{i} a_{i} \mathrm{d}b_{i} \in N\}$$

 $K \colon {}^{H}\mathcal{I}(M^{+}) \to {}^{H}\mathsf{FODC}(M), \qquad I \mapsto (\Phi(M^{+}/I), \mathrm{d}), \quad I \in {}^{H}\mathcal{I}(M^{+})$

where the exterior derivative is defined according to

 $\mathrm{d}: M \to \Phi(M^+/I), \quad m \mapsto m_{(1)} \otimes [m_{(2)}^+] \qquad \text{for } m \in M\text{,}$

We say that a left H-comodule algebra P is a H-Hopf-Galois extension of $M:=P^{\mathrm{co}(H)}$ if the following map is an isomorphism

 $\operatorname{can} := (m_P \otimes \operatorname{id}) \circ (\operatorname{id} \otimes \Delta_R) : P \otimes_M P \to P \otimes H.$

where m_P is the multiplication in P.

Definition

A principal right *H*-comodule algebra is a right *H*-comodule algebra (P, Δ_R) such that *P* is a *H*-Hopf–Galois extension of *M* and *P* is faithfully flat as a right and left *M*-module.

For a right *H*-comodule algebra (P, Δ_R) with $M := P^{\operatorname{co} H}$ we have that the extension $M \to P$ being Hopf–Galois extension is equivalent to exactness of the sequence

$$0 \longrightarrow P\Omega^1_u(M) P \overset{\iota}{\longrightarrow} \Omega^1_u(P) \overset{\mathrm{ver}}{\longrightarrow} P \otimes H^+ \longrightarrow 0,$$

where $\Omega^1_u(M)$ is the restriction of $\Omega^1_u(P)$ to $M,\,\iota$ is the inclusion map.

Definition

A quantum principal bundle is a triple (P, H, N) consisting of a H-Hopf–Galois extension $\Delta_R : P \to P \otimes H$ of $M = P^{coH}$ together with a sub-P-P-bimodule $N \subseteq \Omega^1_u(P)$ which is coinvariant under the right H-coaction Δ_R and for which there exists an Ad_H -coinvariant right ideal $I \subseteq H^+$ satisfying $\operatorname{ver}(N) = M \otimes I$.

Quantum Principal Bundles

where $\overline{\operatorname{ver}}$ is the restriction of ver to $\Omega^1_u(G)$. This means that for any sub-G - G-bimodule $N \subseteq \Omega^1_u(G)$, with corresponding ideal $\operatorname{unit}_G(N) = I$, it holds that

$$\operatorname{ver}(N) = G \otimes \pi(I).$$

From this we see that the requirement that $ver(N) = M \otimes I$ is automatically satisfied. Meaning that a quantum principal homogeneous space can equivalently described as a homogeneous Hopf–Galois extension, together with an Ad_R -coideal of G^+ .

Theorem

Let $\pi: G \to H$ define a quantum principal bundle with $M := G^{\operatorname{co} H}$ and $V_M := \Phi(\Omega^1(M))$. A right *H*-action is defined by

 $\triangleleft : V_M \otimes H \to V_M, \qquad ([m], h) \mapsto [m \cdot i(h)], \quad m \in M, h \in H,$

a right H-coaction is defined by

 $\operatorname{Ad}_R: M \to M \otimes H, \qquad \operatorname{Ad}_R: m \to m_{(2)} \otimes \pi(S(m_{(1)})m_{(3)}), \quad m \in M$

The module structure is independent of the choice of *i*, and a Yetter–Drinfeld module is given by the triple $(V_M, \triangleleft, \operatorname{Ad}_R)$.

Quantised Coordinate Algebras $\mathcal{O}_q(G)$

Let V be a finite-dimensional $U_q(\mathfrak{g})$ -module, $v \in V$, and $f \in V^*$, the linear dual of V. Consider the function

 $c_{v,f}^V : U_q(\mathfrak{g}) \to \mathbb{C}, \qquad X \mapsto f(X(v)).$

The coordinate ring of V is the subspace

$$C(V) := \operatorname{Span}_{\mathbb{C}} \{ c_{v,f}^V \, | \, v \in V, \, f \in V^* \} \subseteq U_q(\mathfrak{g})^*.$$

In fact, we see that $C(V) \subseteq U_q(\mathfrak{g})^\circ$, where $U_q(\mathfrak{g})^\circ$ denotes the Hopf dual of a Hopf algebra $U_q(\mathfrak{g})$, and that a Hopf subalgebra of $U_q(\mathfrak{g})^\circ$ is given by

$$\mathcal{O}_q(G) := \bigoplus_{V \in \mathsf{Rep}_1U_q(\mathfrak{g})} C(V).$$

We call $\mathcal{O}_q(G)$ the quantum coordinate algebra of G, where G is the unique connected, simply connected, complex algebraic group having \mathfrak{g} as its complex Lie algebra.

Quantum Flag Manifolds

Let \mathfrak{g} be a complex simple Lie algebra of rank r. For S a subset of simple roots, consider the Hopf subalgebra

$$U_q(\mathfrak{l}_S) := \langle K_i, E_j, F_j \mid i = 1, \dots, r; \alpha_j \in S \rangle.$$

From the Hopf algebra embedding $\iota : U_q(\mathfrak{l}_S) \hookrightarrow U_q(\mathfrak{g})$, we get the dual Hopf algebra map $\iota^\circ : U_q(\mathfrak{g})^\circ \to U_q(\mathfrak{l}_S)^\circ$. We have

$$\pi_S := \iota^{\circ}|_{\mathcal{O}_q(G)} : \mathcal{O}_q(G) \to U_q(\mathfrak{l}_S)^{\circ},$$

and the Hopf subalgebra $\mathcal{O}_q(L_S) := \pi_S \big(\mathcal{O}_q(G) \big) \subseteq U_q(\mathfrak{l}_S)^{\circ}$. The quantum-homogeneous space

$$\pi: \mathcal{O}_q(G) \to \mathcal{O}_q(L_S),\tag{1}$$

is called the quantum flag manifold associated to \boldsymbol{S} and denoted by

$$\mathcal{O}_q(G/L_S) := \mathcal{O}_q(G)^{\operatorname{co}(\mathcal{O}_q(L_S))}$$

The extension $\mathcal{O}_q(G/L_S) \hookrightarrow \mathcal{O}_q(G)$ is a principal comodule algebra.

Theorem (Heckenberger–Kolb)

For *S* a subset of simple roots corresponding to the classical irreducible flag manifolds, there exist exactly two non-isomorphic, irreducible, left-covariant, finite-dimensional, first-order differential calculi of finite dimension over $\mathcal{O}_q(G/L_S)$. Moreover, the corresponding maximal prolongations have classical dimensions.

We denote the direct sum of the corresponding calculi by

$$\Omega^{1}_{HK}(G/L_S) = \Omega^{(1,0)}_{HK}(G/L_S) \oplus \Omega^{(0,1)}_{HK}(G/L_S).$$

In this case we have $\mathfrak{g} = \mathfrak{sl}_n$ and $\mathfrak{l}_S = \mathfrak{sl}_r \oplus \mathfrak{gl}_{n-r}$. Denote the corresponding quantized coordinate algebra as $\mathcal{O}_q(\operatorname{Gr}_{n,r}) = \mathcal{O}_q(SU_n)^{\operatorname{co}\mathcal{O}_q(SU_r \times U_{n-1})}$.

Fact. The quantum principal bundle given by $(\mathcal{O}_q(\operatorname{Gr}_{n,r}) \hookrightarrow \mathcal{O}_q(SU_n), \Omega^1_{bc}(SU_n))$ does not gives $\Omega^1_{HK}(\operatorname{Gr}_{n,r})$.

Proposition

There is an ideal N such that the restriction of $\Omega_u^1(SU_n)/N$ to $\mathcal{O}_q(\operatorname{Gr}_{n,r})$ is $\Omega_{HK}^1(\operatorname{Gr}_{n,r})$ and $(\mathcal{O}_q(\operatorname{Gr}_{n,r}) \hookrightarrow \mathcal{O}_q(SU_n), \Omega_{bc}^1(SU_n)/N)$ defines a quantum principal bundle.

Theorem

The maximal prolongations of $\Omega_{HK}^{(0,1)}(\operatorname{Gr}_{n,r})$ and $\Omega_{HK}^{(1,0)}(\operatorname{Gr}_{n,r})$ are Nichols algebras. The corresponding Yetter–Drinfeld module structures are given by the quantum principal bundle $(\mathcal{O}_q(\operatorname{Gr}_{n,r}) \hookrightarrow \mathcal{O}_q(SU_n), \Omega_{bc}^1(SU_n)/N).$

Sketch of Proof

• Let $V = \Phi(\Omega_{HK}^{(1,0)}(\operatorname{Gr}_{n,r}))$ then $\Phi(\Omega_{HK}^{(0,1)}(\operatorname{Gr}_{n,r})) = V^*$ as $U_q(\mathfrak{sl}_r \oplus \mathfrak{gl}_{n-r})$ -module. Moreover, $V = W_1 \otimes W_2$ where W_1 is a tautological $U_q(\mathfrak{sl}_r)$ -module and W_2 is a tautological $U_q(\mathfrak{gl}_{n-r})$ -module.

$$\begin{split} V\otimes V &= ``\Lambda^2 W_1" \otimes ``\Lambda^2 W_2" \bigoplus ``S^2 W_1" \otimes ``S^2 W_2". \\ &\bigoplus ``S^2 W_1" \otimes ``\Lambda^2 W_2" \bigoplus ``\Lambda^2 W_1" \otimes ``S^2 W_2". \end{split}$$

- For the maximal prolongation $\Omega_{HK}^{(\bullet,0)}(\mathsf{Gr}_{n,r})$ of $\Omega_{HK}^{(1,0)}(\mathsf{Gr}_{n,r})$ $\Phi(\Omega_{HK}^{(\bullet,0)}(\mathsf{Gr}_{n,r})) = \Lambda_a V := \mathcal{T}(V)/\langle \Lambda_a^2 V \rangle.$
- Quantum Howe duality

$$\Lambda_q(V) = \Lambda_q(W_1 \otimes W_2) \simeq \bigoplus_{\lambda} M_{\lambda} \otimes M_{\lambda^t},$$
(2)

where λ varies over all *r*-bounded (partitions) weights of $U_q(\mathfrak{sl}_r)$, λ^t is the transpose of λ .