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Notation

Let H be a Hopf algebra
• ε : H → C
• ∆: H → H ⊗H, ∆h =

∑
i xi ⊗ yi = h(1) ⊗ h(2)

• S : H → H

Let H+ = H ∩ ker ε and h+ = h− ε(h)1 for h ∈ H.
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Nichols algebras

A braided vector space is a pair (V, σ) where V is a vector
space and σ ∈ Aut(V ⊗ V ) such that

σ12σ23σ12 = σ23σ12σ23, σ12 := σ ⊗ id, σ23 := id⊗σ.

Let Bn be the braid group of n stands generated by β1, . . . , βn
subject to the relations

βiβi+1βi = βi+1βiβi+1, 1 ≤ i, j ≤ n− 2;

βiβj = βjβi, 1 ≤ i, j ≤ n− 2, |i− j| ≥ 2.

ρn : Bn → Aut(V ⊗n), ρn(βi) = id⊗ · · · ⊗ id⊗σ ⊗ id⊗ · · · ⊗ id,

s : Sn → Bn such that s(ti) = βi, s(titi+1) = s(ti)s(ti+1)

Sσ
n :=

∑
π∈Sn

ρn(s(π)) : V ⊗n → V ⊗n.
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Nichols algebras

Definition
The Nichols algebra of a braided vector space (V, σ) is the
braided Hopf algebra defined by

B(V ) :=
⊕

n∈Zn≥0

Bn(V ), where Bn(V ) = T n(V )/ ker(Sσ
n).

Example
σ(v ⊗ w) = w ⊗ v for all v, w ∈ V then B(V ) = Λ(V ).

Example
σ(v ⊗ w) = −w ⊗ v for all v, w ∈ V then B(V ) = S(V ).

Example
For Uq(g), Uq(n+) and Uq(n−) are Nichols algebras.
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Yetter–Drinfeld modules

Definition
A Yetter–Drinfeld module over a Hopf algebra H is an
H-module V , with an action /, and a H-comodule structure
such that

v(0)/h(1)⊗v(1)/h(2) = (v/h(2))(0)⊗h(1)(v/h(2))(1) ∀h ∈ H, v ∈ V.

The category of Yetter–Drinfeld modules over H is denoted
by YDHH .
The braiding in the category YDHH is defined by

σ : V⊗W →W⊗V, v⊗w 7→ w(0)⊗v/w(1) for v ∈ V , w ∈W.

Example
H = C{1}, v / 1 = v for all v ∈ V then B(V ) = S(V ).

Example
H = C{Z/2} = Span{1,−1}, v / (−1) = −v then B(V ) = Λ(V ).
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Quantum Homogeneous Spaces

Let G and H be Hopf algebras, and π : G→ H a surjective
Hopf algebra map. A right H-coaction, giving G the structure of
a right H-comodule algebra, is given by

∆R := (id⊗π) ◦∆ : G→ G⊗H.

We call the coinvariant subspace M := GcoH of such a
coaction a quantum homogeneous space.
A strong bicovariant splitting map is a unital linear map
i : H → G splitting the projection π : G→ H such that

(i⊗ id) ◦∆ = ∆R ◦ i, (id⊗i) ◦∆ = ∆L ◦ i.

Remark
The coproduct of G restricts to a left M -comodule
∆L : M → G⊗M , giving M the structure of a left G-comodule
map.
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Takeuchi’s Categorical Equivalence

Let HMod denote the category of left H-comodules.

Definition
Let GMMod0 be the category whose objects are left
G-comodules ∆L : F → G⊗F , endowed with a
M -M -bimodule structure, such that

1 ∆L(mf) = ∆L(m)∆L(f), for all f ∈ F ,m ∈M ,
2 FB+ = B+F ,

and whose morphisms are left G-comodule, M -M -bimodule,
maps.
Denoting by �H the cotensor product over H.

Φ : GMMod0 → HMod, F 7→ F/M+F ,
Ψ : HMod→ G

MMod, V 7→ G�HV,

where the left H-comodule structure of Φ(F) is given by
(π ⊗ id) ◦∆L, and the M -M -module, and left G-comodule,
structures of Ψ(V ) are defined on the first tensor factor.
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Differential Calculi

Definition
A differential calculi is a dg-algebra (Ω• '

⊕
k∈Z≥0

Ωk, d) which
is generated in degree 0 as a dg-algebra.

Definition
A first-order differential calculi over an algebra A is a pair
(Ω1,d), where Ω1 is A-A-bimodule and d: A→ Ω1 is a linear
map such that
1) d(ab) = (da)b+ adb for all a, b ∈ A,
2) Ω1 is generated as a left A-module by

dA = Span(da | a ∈ A).
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Universal Differential Calculi

Definition
The universal first-order calculi over A is the pair (Ω1

u(A), du),
where

1 Ω1
u(A) = kerm, where m : A⊗A→ A it the product map,

2 du : a 7→ 1⊗ a− a⊗ 1 for a ∈ A.

Theorem (Woronowicz’89)
Every first-order differential calculi over A is of the form
(Ω1

u(A)/N,proj ◦du), where N is a A-sub-bimodule of Ω1
u(A),

and proj : Ω1
u(A)→ Ω1

u(A)/N is the canonical projection.
For Ω1 = Ω1

u(A)/N the maximal prolongation is the differential
calculi over A given by the pair

(Ω•(A) := T (A)/〈N + dN〉,d).
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Covariant Differential Calculi

A first-order differential calculi (Ω1(M),d) over a quantum
homogeneous space M = GcoH is covariant if there exists a
map ∆L : Ω1(M)→ G⊗ Ω1(M) such that

∆L(mdn) = ∆(m)(id⊗d)∆(n) for all m,n ∈M.

Note that Ω1(M) is an object in G
MModM . Moreover,

(Ωu(M), du) is covariant and any covariant
calculi Ω1(M) ' Ω1(M)/N is classified by the sub-object N
of Ω1

u(M) in G
MModM .

Warning. d is not a morphism in G
MModM .
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Differential Calculi

Denote by HI(M+) the category whose objects I are
sub-comodules of M , satisfying

bm+ ∈ I for all m ∈M , b ∈ I
and for two objects I, J , the hom-set Hom(I, J) is comprised of
the inclusion map if I ⊆ J , and is otherwise empty.

Theorem
An equivalence of categories between HI(M+) and
HFODC(M) is given by functors

I : HFODC(M)→ HI(M+), Ω1
u(M)/N 7→ {ε(ai)b+i |

∑
i

aidbi ∈ N}

K : HI(M+)→ HFODC(M), I 7→ (Φ(M+/I), d), I ∈ HI(M+)

where the exterior derivative is defined according to

d : M → Φ(M+/I), m 7→ m(1) ⊗ [m+
(2)] for m ∈M ,
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Principal Comodule Algebras

We say that a left H-comodule algebra P is a H-Hopf–Galois
extension of M := P co(H) if the following map is an
isomorphism

can := (mP ⊗ id) ◦ (id⊗∆R) : P ⊗M P → P ⊗H.

where mP is the multiplication in P .

Definition
A principal right H-comodule algebra is a right H-comodule
algebra (P,∆R) such that P is a H-Hopf–Galois extension
of M and P is faithfully flat as a right and left M -module.
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Quantum Principal Bundles

For a right H-comodule algebra (P,∆R) with M := P coH we
have that the extension M → P being Hopf–Galois extension is
equivalent to exactness of the sequence

0 −→ PΩ1
u(M)P

ι−→Ω1
u(P )

ver−→P ⊗H+ −→ 0,

where Ω1
u(M) is the restriction of Ω1

u(P ) to M , ι is the inclusion
map.

Definition
A quantum principal bundle is a triple (P,H,N) consisting of a
H-Hopf–Galois extension ∆R : P → P ⊗H of M = P coH

together with a sub-P -P -bimodule N ⊆ Ω1
u(P ) which is

coinvariant under the right H-coaction ∆R and for which there
exists an AdH -coinvariant right ideal I ⊆ H+ satisfying
ver(N) = M ⊗ I.
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Quantum Principal Bundles

Ω1
u(G)

unitG
��

ver

**
G⊗G+

id⊗π
// G�HH

+.

where ver is the restriction of ver to Ω1
u(G). This means that for

any sub-G−G-bimodule N ⊆ Ω1
u(G), with corresponding ideal

unitG(N) = I, it holds that

ver(N) = G⊗ π(I).

From this we see that the requirement that ver(N) = M ⊗ I is
automatically satisfied. Meaning that a quantum principal
homogeneous space can equivalently described as a
homogeneous Hopf–Galois extension, together with an
AdR-coideal of G+.
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Main Theorem

Theorem
Let π : G→ H define a quantum principal bundle with
M := GcoH and VM := Φ(Ω1(M)). A right H-action is defined
by

/ : VM ⊗H → VM ,
(
[m], h

)
7→ [m · i(h)], m ∈M,h ∈ H,

a right H-coaction is defined by

AdR : M →M⊗H, AdR : m→ m(2)⊗π(S(m(1))m(3)), m ∈M

The module structure is independent of the choice of i, and a
Yetter–Drinfeld module is given by the triple (VM , /,AdR).
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Quantised Coordinate Algebras Oq(G)

Let V be a finite-dimensional Uq(g)-module, v ∈ V , and f ∈ V ∗,
the linear dual of V . Consider the function

cVv,f : Uq(g)→ C, X 7→ f
(
X(v)

)
.

The coordinate ring of V is the subspace

C(V ) := SpanC{cVv,f | v ∈ V, f ∈ V ∗} ⊆ Uq(g)∗.

In fact, we see that C(V ) ⊆ Uq(g)◦, where Uq(g)◦ denotes the
Hopf dual of a Hopf algebra Uq(g), and that a Hopf subalgebra
of Uq(g)◦ is given by

Oq(G) :=
⊕

V ∈Rep1Uq(g)

C(V ).

We call Oq(G) the quantum coordinate algebra of G, where G
is the unique connected, simply connected, complex algebraic
group having g as its complex Lie algebra.
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Quantum Flag Manifolds

Let g be a complex simple Lie algebra of rank r. For S a subset
of simple roots, consider the Hopf subalgebra

Uq(lS) :=
〈
Ki, Ej , Fj | i = 1, . . . , r;αj ∈ S

〉
.

From the Hopf algebra embedding ι : Uq(lS) ↪→ Uq(g), we get
the dual Hopf algebra map ι◦ : Uq(g)◦ → Uq(lS)◦. We have

πS := ι◦|Oq(G) : Oq(G)→ Uq(lS)◦,

and the Hopf subalgebra Oq(LS) := πS
(
Oq(G)

)
⊆ Uq(lS)◦.

The quantum-homogeneous space

π : Oq(G)→ Oq(LS), (1)

is called the quantum flag manifold associated to S and
denoted by

Oq
(
G/LS

)
:= Oq

(
G)co(Oq(LS)).

The extension Oq(G/LS) ↪→ Oq(G) is a principal comodule
algebra.
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Theorem (Heckenberger–Kolb)
For S a subset of simple roots corresponding to the classical
irreducible flag manifolds, there exist exactly two
non-isomorphic, irreducible, left-covariant, finite-dimensional,
first-order differential calculi of finite dimension over Oq(G/LS).
Moreover, the corresponding maximal prolongations have
classical dimensions.
We denote the direct sum of the corresponding calculi by

Ω1
HK(G/LS) = Ω

(1,0)
HK (G/LS)⊕ Ω

(0,1)
HK (G/LS).
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Quantum Grassmannians

In this case we have g = sln and lS = slr ⊕ gln−r.
Denote the corresponding quantized coordinate algebra
as Oq(Grn,r) = Oq(SUn)coOq(SUr×Un−1).

Fact. The quantum principal bundle given by
(Oq(Grn,r) ↪→ Oq(SUn),Ω1

bc(SUn)) does not gives Ω1
HK(Grn,r).

Proposition
There is an ideal N such that the restriction of Ω1

u(SUn)/N to
Oq(Grn,r) is Ω1

HK(Grn,r) and
(Oq(Grn,r) ↪→ Oq(SUn),Ω1

bc(SUn)/N) defines a quantum
principal bundle.
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Main Theorem: Quantum Grassmannian Case

Theorem
The maximal prolongations of Ω

(0,1)
HK (Grn,r) and Ω

(1,0)
HK (Grn,r) are

Nichols algebras. The corresponding Yetter–Drinfeld module
structures are given by the quantum principal bundle
(Oq(Grn,r) ↪→ Oq(SUn),Ω1

bc(SUn)/N).
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Sketch of Proof

• Let V = Φ(Ω
(1,0)
HK (Grn,r)) then Φ(Ω

(0,1)
HK (Grn,r)) = V ∗ as

Uq(slr ⊕ gln−r)-module. Moreover, V = W1 ⊗W2 where W1 is a
tautological Uq(slr)-module and W2 is a tautological
Uq(gln−r)-module.

V ⊗ V = “Λ2W1”⊗ “Λ2W2”
⊕

“S2W1”⊗ “S2W2”.⊕
“S2W1”⊗ “Λ2W2”

⊕
“Λ2W1”⊗ “S2W2”.

• For the maximal prolongation Ω
(•,0)
HK (Grn,r) of Ω

(1,0)
HK (Grn,r)

Φ(Ω
(•,0)
HK (Grn,r)) = ΛqV := T (V )/〈Λ2

qV 〉.

• Quantum Howe duality

Λq(V ) = Λq(W1 ⊗W2) '
⊕
λ

Mλ ⊗Mλt , (2)

where λ varies over all r-bounded (partitions) weights
of Uq(slr), λt is the transpose of λ.
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